CONSOLIDATED CHEMICAL CO. ABN: 34 527 060 773 ACN: 005 056 502 52-62 Waterview Close, DANDENONG SOUTH, 3175 P.O. BOX 4415, DANDENONG SOUTH, 3164, VIC, AUSTRALIA. PHONE: (03) 9799 7555 FAX: (03) 9799 7666 24 Hour Emergency Response: 1800 839 984 E-mail: sales@conchem.com.au Website: www.conchem.com.au ## **RED IRON OXIDE** ### **CONSOLIDATED CHEMICAL CO** Chemwatch: 56186 Version No: 6.1.1.1 Safety Data Sheet according to WHS and ADG requirements ### Chemwatch Hazard Alert Code: 1 Issue Date: 27/06/2017 Print Date: 05/12/2017 S.GHS.AUS.EN ### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | RED IRON OXIDE | | | |-------------------------------|---|--|--| | Chemical Name | II. Pigment Red 101; C.I. Pigment Red 102 | | | | Chemical formula | e2-O3 | | | | Other means of identification | Not Available | | | | CAS number | 1332-37-2 | | | ### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Colouration pigment for paints, concrete and plastics | |--------------------------|---| |--------------------------|---| ### Details of the supplier of the safety data sheet | Registered company name | CONSOLIDATED CHEMICAL CO | |-------------------------|--------------------------------------| | Address | 52-62 Waterview Close 3175 Australia | | Telephone | 03 9799 7555 | | Fax | 03/9799 7666 | | Website | Not Available | | Email | Not Available | ### **Emergency telephone number** | Association / Organisation | Not Available | |--------------------------------------|---------------| | Emergency telephone numbers | 1800 839 984 | | Other emergency
telephone numbers | Not Available | ### **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | | | |----------------|----------------------|----------------------|--|--| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | | | Once connected and if the message is not in your prefered language then please dial 01 ### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture ### **RED IRON OXIDE** Issue Date: 27/06/2017 Print Date: 05/12/2017 ### NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |------------------|----------------| | Classification | Not Applicable | | Label elements | | | |-----------------|-------|----------------| | Hazard pictogra | ım(s) | Not Applicable | | | | | | SIGNAL V | VORD | NOT APPLICABLE | | | | | ### Hazard statement(s) Not Applicable ### Supplementary statement(s) Not Applicable ### Precautionary statement(s) Prevention Not Applicable ### Precautionary statement(s) Response Not Applicable ### Precautionary statement(s) Storage Not Applicable ### Precautionary statement(s) Disposal Not Applicable ### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS ### **Substances** | CAS No | %[weight] | Name | |-----------|-----------|--| | 1309-37-1 | >95 | C.I. Pigment Red 101; C.I. Pigment Red 102 | #### **Mixtures** See section above for composition of Substances ### **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin or hair contact occurs: ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | Inhalation | If dust is inhaled, remove from contaminated area. Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ### Indication of any immediate medical attention and special treatment needed Treat symptomatically. Chemwatch: **56186**Version No: **6.1.1.1** Page 3 of 9 **RED IRON OXIDE** Issue Date: 27/06/2017 Print Date: 05/12/2017 For acute or short term repeated exposures to iron and its derivatives: - Always treat symptoms rather than history. - In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg. - Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin. - ▶ Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur. - Firon intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension. - Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination. - · Activated charcoal does not effectively bind iron. - · Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea. - Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology] ### **SECTION 5 FIREFIGHTING MEASURES** ### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. ### Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | |-------------------------|---| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: metal oxides May emit poisonous fumes. Unlikely to decompose at temperatures attained in a fire. | | HAZCHEM | Not Applicable | #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** ### Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. | | | |--------------|--|--|--| | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. | | | Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling ### Safe handling - ► Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ► Use in a well-ventilated area. - ▶ Prevent concentration in hollows and sumps. #### **RED IRON OXIDE** Issue Date: **27/06/2017**Print Date: **05/12/2017** #### Other information - Store in original containers. - ► Keep containers securely sealed. - ▶ Store in a cool, dry, well-ventilated area. - · Store away from incompatible materials and foodstuff containers. ### Conditions for safe storage, including any incompatibilities #### Suitable container Storage incompatibility - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. #### For iron oxide (ferric oxide): - Avoid storage with aluminium, calcium hypochlorite and ethylene oxide. - Risk of explosion occurs following reaction with powdered aluminium, calcium silicide, ethylene oxide (polymerises), carbon monoxide, magnesium and perchlorates. - Risk of ignition or formation of flammable gases or vapours occurs following reaction with carbides, for example caesium carbide, (produces heat), hydrogen sulfide, hydrogen peroxide (decomposes). - An intimately powered mixture with aluminium, usually ignited by magnesium ribbon, reacts with an intense exotherm to produce molten iron in the commercial "thermit" welding process - WARNING: Avoid or control reaction with peroxides. All *transition meta*l peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. - ▶ The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. - ▶ Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. - These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. - ▶ The state of subdivision may affect the results. - ► Avoid storage with reducing agents. Must not be stored together May be stored together with specific preventions — May be stored together ### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### **Control parameters** ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--------------------|----------------------------|---------------------------------|-------|-----------|-----------|-----------| | Australia Exposure | C.I. Pigment Red 101; C.I. | Iron oxide fume (Fe2O3) (as Fe) | 5 | Not | Not | Not | | Standards | Pigment Red 102 | | mg/m3 | Available | Available | Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--|----------------------------|----------|-----------|-------------| | C.I. Pigment Red 101; C.I. Pigment Red 102 | Iron oxide; (Ferric oxide) | 15 mg/m3 | 360 mg/m3 | 2,200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | C.I. Pigment Red 101; C.I.
Pigment Red 102 | 2,500 mg/m3 | Not Available | ### **Exposure controls** ## Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. propriate engineering The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. |Exhaust to maintain a workplace value of less than 6 mg/m3 fine dust. ## Issue Date: **27/06/2017**Print Date: **05/12/2017** #### **RED IRON OXIDE** ### Personal protection Safety glasses with side shields Chemical goggles. ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy Eye and face protection document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. See Hand protection below Skin protection The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Hands/feet protection Personal hygiene is a key element of effective hand care. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. nitrile rubber. butyl rubber. **Body protection** See Other protection below Overalls. Other protection P.V.C. apron. Barrier cream. Thermal hazards Not Available #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1
- | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** | Information on basic physical and chemical properties | | | | |---|---|------------------------------|---------------| | Appearance | Red powder. No odour. Insoluble in water. | | | | | | | | | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | Issue Date: **27/06/2017**Print Date: **05/12/2017** ### **RED IRON OXIDE** | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | |--|----------------|---|----------------| | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | >1000 | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | Negligible | | Vapour pressure (kPa) | Negligible | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | ### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ### **SECTION 11 TOXICOLOGICAL INFORMATION** ### Information on toxicological effects | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. | |--------------|--| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Iron poisoning results in pain in the upper abdomen and vomiting, and is followed hours later by shock, in severe cases coma and death. Iron toxicity increases in proportion to their solubility in the gastrointestinal tract. | | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Еуе | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. | Chemwatch: **56186**Version No: **6.1.1.1** Page **7** of **9** **RED IRON OXIDE** Issue Date: **27/06/2017**Print Date: **05/12/2017** There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. #### Chronic Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. | | TOXICITY | IRRITATION | | |-----------------------|---|---------------------------------|--| | RED IRON OXIDE | Oral (rat) LD50: >5,000 mg/kg ^[2] | Eye (rabbit): non-irritant | | | | | Skin (rabbit): non-irritant 24h | | | C.I. Pigment Red 101; | TOXICITY | IRRITATION | | | C.I. Pigment Red 102 | Oral (rat) LD50: >5000 mg/kg ^[1] | Not Available | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | C.I. PIGMENT RED 101; C.I. PIGMENT RED 102 No significant acute toxicological data identified in literature search. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. | Acute Toxicity | × | Carcinogenicity | 0 | |-----------------------------------|---|-----------------------------|---| | Skin Irritation/Corrosion | 0 | Reproductivity | 0 | | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | 0 | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: 🗶 – Data available but does not fill the criteria for classification ✓ – Data available to make classification ○ – Data Not Available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | C.I. Pigment Red 101;
C.I. Pigment Red 102 | LC50
EC50 | 96
72 | Fish | 0.05mg/L
18mg/L | 2 | |---|--------------|--------------------|-------------------------------|--------------------|--------| | RED IRON OXIDE | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | NOEC | 504 | Fish | 0.52mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 18mg/L | 2 | | | LC50 | 96 | Fish | 0.05mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data #### For Metal: Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into RED IRON OXIDE Issue Date: **27/06/2017**Print Date: **05/12/2017** ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |------------|---------------------------------------|---------------------------------------|--| | | No Data available for all ingredients | No Data available for all ingredients | | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - ▶ Recycling - ► Disposal (if all else fails) ## Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Management Authority for disposal. - ▶ Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. ### **SECTION 14 TRANSPORT INFORMATION** ## Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture C.I. PIGMENT RED 101; C.I. PIGMENT RED 102(1309-37-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs Chemwatch: 56186 Page 9 of 9 Issue Date: 27/06/2017 Version No: 6.1.1.1 Print Date: 05/12/2017 #### **RED IRON OXIDE** | National Inventory | Status | |----------------------------------|--| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (C.I. Pigment Red 101; C.I. Pigment Red 102) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Υ | | Japan - ENCS | Υ | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations **OSF: Odour Safety Factor** NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.